477 research outputs found

    A permafrost warming in a cooling Antarctica?

    Get PDF
    The magnitude and even direction of recent Antarctic climate change is still debated because the paucity of long and complete instrumental data records. While along Antarctic Peninsula a strong warming coupled with large retreat of glaciers occurred, in continental Antarctica a cooling was recently detected. Here, the first existing permafrost data set longer than 10 years recorded in continental Antarctica is presented. Since 1997 summer ground surface temperature showed a strong warming trend (0.31\ub0C per year) although the air temperature was almost stable. The summer ground surface temperature increase seemed to be influenced mainly by the increase of the total summer radiation as confirmed also by the increase of the summer thawing degree days. In the same period the active layer exhibited a thickening trend (1 cm per year) comparable with the thickening rates observed in several Arctic locations where air warming occurred. At all the investigated depths permafrost exhibited an increase of mean annual temperature of approximately 0.1\ub0C per year. The dichotomy between active layer thickness and air temperature trends can produce large unexepected and unmodelled impacts on ecosystems and CO2 balance

    Relationships between vegetation patterns and periglacial landforms in northwestern Svalbard

    Get PDF
    We studied the small-scale vegetation pattern in the high Arctic at Ny Angstromlesund to assess if the plant distribution was related to periglacial landforms. The whole area has been deglaciated for millennia but only a modest part of the area was covered by mature vegetation. The plant cover varied considerably in relation to ground patterning originated by periglacial processes, especially frost heave, frost creep, gelifluction and ice segregation, giving rise to a mosaic of microhabitats sharply differing from each other as regards physical properties and microclimate. The distributional patterns of vascular plants, lichens and bryophytes were primarily affected by complex responses to substrate texture, soil moisture content and substrate disturbance. Since global warming will probably affect both periglacial processes and plant responses to altered habitat conditions, we concluded that long-term monitoring of relationships between landforms and vegetation represents a suitable tool for assessing the impact of global change on arctic regions

    A pilot project to limit the human impacts on the fragile antarctic biota: Mitigation of a runway through vegetation transplantation

    Get PDF
    Background: Antarctica is among the world\u2019s last great wildernesses, but the anthropogenic activities and associated infrastructures threaten its fragile biota. We quantify the impact of the construction of a 2200 m long gravel runway airstrip for airfreight operations of the Italian research station on vegetation ecosystems at Boulder Clay (continental Antarctica). We propose a pilot project to mitigate this impact through the transplantation of vegetation from the runway to safe sites. Methods: A vegetation field survey was performed through phytosociological relev\ue9s and vegetation mapping and data were analyzed through multivariate analysis. Results: We quantify the destructive impact of the runway construction on the flora and vegetation of Boulder Clay. Based on vegetation characteristics, 28 priority areas were transplanted from the runway to safe sites, with 89% of survival. Conclusions: To our knowledge, this is the first time that vegetation transplantation was performed in Antarctica to mitigate the consequences of human actions, as formerly it was used only for scientific experiments. This pilot project provides a tool to support management decisions, involving the quantitative evaluation of the infrastructure impacts and showing the suitability of practical mitigation actions. This pilot project proposes a practical tool exportable to all Antarctica and beyond and suggests to link the permissions\u2019 release for the new infrastructures in Antarctica to the realization of specific conservation and mitigation actions

    Unexpected impacts of climate change on Alpine vegetation

    Get PDF
    The vegetation in a high alpine site of the European Alps experienced changes in area between 1953 and 2003 as a result of climate change. Shrubs showed rapid expansion rates of 5.6% per decade at altitudes between 2400 m and 2500 m. Above 2500 m, vegetation coverage exhibited unexpected patterns of regression associated with increased precipitation and permafrost degradation. As these changes follow a sharp increase in both summer and annual temperatures after 1980, we suggest that vegetation of the alpine (2400-2800 m) and nival (above 2800 m) belts respond in a fast and flexible way, contradicting previous hypotheses that alpine and nival species appear to have a natural inertia and are able to tolerate an increase of 1-2 degrees C in mean air temperature

    Salix shrub encroachment along a 1000 m elevation gradient triggers a major ecosystem change in the European Alps

    Get PDF
    Shrub encroachment, a globally recognized response to climate warming, usually involves late successional species in mountain environments, without alteration to climax communities. We show that a major ecosystem change is occurring in the European Alps across a 1000 m elevation gradient, with pioneer hygrophilous Salix shrubs, previously typical of riparian forests, wetlands and avalanche ravines, encroaching into the climax communities of subalpine and alpine belts shrublands and grasslands, as well as snowbeds, pioneer vegetation and barren grounds in the nival belt. We analyzed Salix recruitment through dendrochronological methods, and assessed its relationships with climate and atmospheric CO2 concentration. The dendrochronological data indicated that Salix encroachment commenced in the 1950s (based on the age of the oldest Salix individuals, recruited in 1957), and that it was correlated with increasing atmospheric CO2 concentration, spring warming and snow cover decrease. Hygrophilous Salix shrubs are expanding their distribution both through range filling and upwards migration, likely achieving competitive replacement of species of subalpine and alpine climax communities. They benefit from climate warming and CO2 fertilization and are not sensitive to spring frost damage and soil limitations, being observed across a gradient of soil conditions from loose glacial sediments in recently deglaciated areas (where soils had not had sufficient time to develop) to mature soils such as podzols (when colonizing late successional subalpine shrublands). Salix encroachment may trigger ecosystem and landscape transformations, promoting the development of forests that replace pre-existing subalpine shrublands, and of open woodlands invading alpine grasslands and snowbeds, making the alpine environment similar to sub-Arctic and Arctic areas. This results in a new threat to the conservation of the plant species, communities and landscapes typical of the alpine biota, as mountain ranges such as the Alps provide limited opportunities for upward migration and range-shift

    ACCELERATING CLIMATE CHANGE IMPACTS ON ALPINE GLACIER FOREFIELD ECOSYSTEMS IN THE EUROPEAN ALPS

    Get PDF
    In the European Alps the increase in air temperature was more than twice the increase in global mean temperature over the last 50 years. The abiotic ( glacial) and the biotic components ( plants and vegetation) of the mountain environment are showing ample evidence of climate change impacts. In the Alps most small glaciers (80% of total glacial coverage and an important contribution to water resources) could disappear in the next decades. Recently climate change was demonstrated to affect higher levels of ecological systems, with vegetation exhibiting surface area changes, indicating that alpine and nival vegetation may be able to respond in a fast and flexible way in response to 1-2 degrees C warming. We analyzed the glacier evolution ( terminus fluctuations, mass balances, surface area variations), local climate, and vegetation succession on the forefield of Sforzellina Glacier ( Upper Valtellina, central Italian Alps) over the past three decades. We aimed to quantify the impacts of climate change on coupled biotic and abiotic components of high alpine ecosystems, to verify if an acceleration was occurring on them during the last decade (i.e., 1996-2006) and to assess whether new specific strategies were adopted for plant colonization and development. All the glaciological data indicate that a glacial retreat and shrinkage occurred and was much stronger after 2002 than during the last 35 years. Vegetation started to colonize surfaces deglaciated for only one year, with a rate at least four times greater than that reported in the literature for the establishment of scattered individuals and about two times greater for the well-established discontinuous early-successional community. The colonization strategy changed: the first colonizers are early-successional, scree slopes, and perennial clonal species with high phenotypic plasticity rather than pioneer and snowbed species. This impressive acceleration coincided with only slight local summer warming ( approximately +0.5 degrees C) and a poorly documented local decrease in the snow cover depth and duration. Are we facing accelerated ecological responses to climatic changes and/or did we go beyond a threshold over which major ecosystem changes may occur in response to even minor climatic variations?

    Vascular plant changes in extreme environments: effects of multiple drivers

    Get PDF
    The Antarctic Peninsula is one of three regions of the planet that have experienced the highest rates of climate warming over recent decades. Based on a comprehensive large-scale resurvey, allowing comparison of new (2009) and historical data (1960s), we show that the two native Antarctic vascular plant species have exhibited significant increases in number of occupied sites and percent cover since the 1960s: Deschampsia antarctica increasing in coverage by 191 % and in number of sites by 104 %. Colobanthus quitensis increasing in coverage by 208 % and number of sites by 35 %. These changes likely occurred in response to increases of 1.2 °C in summer air temperature over the same time period. Both species exhibited changes with elevation due to the interaction of multiple drivers (climatic factors and animal disturbance), producing heterogeneity of responses across an elevation gradient. Below an elevation of 20 m fur seal activity exerted negative impacts. Between 20 and 60 m, both plant species underwent considerable increases in the number of sites and percent cover, likely influenced by both climate warming and nutrient input from seals. Above an elevation threshold of 60 m the maximum elevation of the sites occupied decreased for both species, perhaps as a consequence of physical disturbance at higher elevations due to the permafrost conditions and/or the snow cover thickness and persistence. Understanding the role of disturbance drivers for vegetation change in cold regions may become a research priority to enable improved forecasting of biological responses and feedbacks of climate warming on ecosystems in these globally influential regions

    Effects of 5-year experimental warming in the Alpine belt on soil Archaea: Multi-omics approaches and prospects

    Get PDF
    We currently lack a predictive understanding of how soil archaeal communities may respond to climate change, particularly in Alpine areas where warming is far exceeding the global average. Here, we characterized the abundance, structure, and function of total (by metagenomics) and active soil archaea (by metatranscriptomics) after 5-year experimental field warming (+1°C) in Italian Alpine grasslands and snowbeds. Our multi-omics approach unveiled an increasing abundance of Archaea during warming in snowbeds, which was negatively correlated with the abundance of fungi (by qPCR) and micronutrients (Ca and Mg), but positively correlated with soil water content. In the snowbeds transcripts, warming resulted in the enrichment of abundances of transcription and nucleotide biosynthesis. Our study provides novel insights into possible changes in soil Archaea composition and function in the climate change scenario

    Bisphosphonate-associated femoral fracture: implication for management

    Get PDF
    Studies carried out on individuals being treated long term with bisphosphonates have provoked considerable interest and perplexity about the effect that these drugs have on bone turnover in the long run. In fact the experiences reported by numerous researchers tend to highlight how treatment with high doses of bisphosphonates over many years, of individuals with osteoporosis complicated by or secondary to neoplastic pathologies, causes a suppression of bone turnover that over time predisposes the bone to the accumulation of micro damage that can then result in complicated fractures, as in the case described here

    Viscous-Inviscid Interactions in a Boundary-Layer Flow Induced by a Vortex Array

    Full text link
    In this paper we investigate the asymptotic validity of boundary layer theory. For a flow induced by a periodic row of point-vortices, we compare Prandtl's solution to Navier-Stokes solutions at different ReRe numbers. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions between the boundary layer and the outer flow. These interactions can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective
    • …
    corecore